Tiefe des Südpolarmeers und Klima änderten sich synchron | Polarjournal
Über die Jahrmillionen hat sich der Meeresboden des Südpolarmeeres mit den Verschiebungen der Kontinentalplatten verändert und mit ihm die Strömungen, die wiederum das Klima beeinflussten. Foto: Julia Hager

Die Vereisungsgeschichte der Antarktis ist derzeit eines der wichtigsten Themen der Klimaforschung, denn angesichts des fortschreitenden Klimawandels stellt sich die Frage: Wie haben die Eismassen des südlichen Kontinents in der Vergangenheit auf den Wechsel zwischen Kalt- und Warmphasen reagiert und wie werden sie es in Zukunft tun? Einem internationalen Forscherteam unter Leitung von Geophysikern des Alfred-Wegener-Instituts, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) ist es nun gelungen, neue Einblicke in neun Schlüsselmomente der antarktischen Klimageschichte über 34 Millionen Jahre zu gewinnen, indem sie die Wassertiefen des Südpolarmeeres für diese Zeitpunkte rekonstruiert haben. Die neuen Meereskarten erlauben unter anderem Rückschlüsse auf den damaligen Verlauf von Meeresströmungen und zeigen, dass die großen Gletscher der Ostantarktis in zurückliegenden Warmphasen auf ähnliche Weise auf den Klimawandel reagiert haben, wie heutzutage bereits die Gletscher in der Westantarktis. Die Karten und der dazugehörige frei verfügbare Fachartikel sind jetzt im Online-Fachmagazin Geochemistry, Geophysics, Geosystems erschienen, einer Publikation der American Geological Union. 

Der Südliche Ozean ist einer der wichtigen Pfeiler im Klimasystem der Erde. Sein Zirkumpolarstrom, die mächtigste Meeresströmung der Erde, verbindet den Pazifischen, den Atlantischen und den Indischen Ozean miteinander und isoliert die Antarktis und ihre Eismassen seit etwa 30 Millionen Jahren klimawirksam vom Rest der Welt. Heute wie damals aber können gewaltige Meeresströmungen nur dort fließen, wo das Wasser tief genug ist und Hindernisse wie Landbrücken, Inseln oder aber Unterseegebirge und -plateaus ihnen nicht den Weg versperren. Wer die Klima- und Vereisungsgeschichte der Antarktis verstehen will, muss daher genau wissen, wie die Wassertiefen und Oberflächenstrukturen des Meeresbodens im Südlichen Ozean in der Vergangenheit ausgesehen haben.

Diese Informationen finden Forschende aus aller Welt jetzt in neuen hochauflösenden Meeresboden-Rasterkarten und Modelldatensätzen, die ein internationales Forscherteam unter der Leitung von Geowissenschaftlern des AWI für neun Schlüsselmomente der antarktischen Klimageschichte erstellt hat. „Die Geographie des Südlichen Ozeans hat sich im Verlauf der Erdgeschichte permanent verändert, weil Kontinentalplatten zusammenstießen oder auseinanderdrifteten, sich Unterseegebirge auftürmten, Eismassen wie Bulldozer die abgelagerten Sedimente über die Kontinentalschelfe verschoben oder aber Schmelzwasser Schwemmmaterial von Land ins Meer transportierte und dort ablagerte“, sagt AWI-Geophysiker und Ko-Autor Dr. Karsten Gohl. Durch jeden dieser Prozesse veränderten sich die Wassertiefen und mitunter auch die Meeresströmungen. Die neuen Rasterkarten stellen dar, wie sich die Oberflächenstruktur des Meeresbodens im Laufe von 34 Millionen Jahren entwickelte – mit einer Auflösung von etwa 5 mal 5 Kilometern pro Datenpixel und damit um ein 15-Faches genauer als Vorgängermodelle.

Die Veränderungen der Meerestiefe des Südpolarmeeres über 34 Millionen Jahre. Grafik: Alfred-Wegener-Institut, Dr. Katharina Hochmuth

Datensatz vereint Ergebnisse aus 40 Jahren geowissenschaftlicher Forschung in der Antarktis

Für die Rekonstruktion der Meerestiefen haben die Wissenschaftler geowissenschaftliche Messdaten aus 40 Jahren Antarktisforschung zusammengetragen und in einem Meeresboden-Computermodell des Südlichen Ozeans vereint. Die Grundlage bildeten seismische Profile, die auf mehr als 150 geowissenschaftlichen Expeditionen erstellt worden sind und aneinandergereiht eine Länge von einer halben Million Kilometer ergeben. Bei seismischen Messungen werden Schallwellen mehrere Kilometer tief in den Meeresboden geschickt. Anhand ihrer Reflexion zeichnen sie ein Abbild von den übereinandergeschichteten Sedimentablagerungen im Untergrund – gerade so, als würde man mit einem Messer in eine Torte schneiden und die verschiedenen Schichten des Kuchens erkennen. Anschließend glichen die Forscher die identifizierten Schichten mit Bohrkernen aus den entsprechenden Regionen ab. So gelang es ihnen, das Alter der meisten Sedimentschichten zu bestimmen. Im letzten Schritt drehten sie dann die Zeit zurück, indem sie mithilfe des Computermodells berechneten, welche Sedimentablagerungen zu welchem Zeitpunkt schon im Südlichen Ozean vorhanden waren und bis in welche Tiefe der Meeresboden in der jeweiligen Epoche hinabreichte. 

Schlüsselmomente der antarktischen Klimageschichte

Diese Berechnungen führen sie für neun Schlüsselmomente der antarktischen Klimageschichte durch; darunter zum Beispiel für die Warmphase des frühen Pliozäns vor fünf Millionen Jahren. Sie gilt als mögliche Richtschnur für das künftige Klima auf der Erde. Damals war die Welt im Durchschnitt 2 bis 3 Grad Celsius wärmer als heute, unter anderem, weil die Kohlendioxidkonzentration in der Atmosphäre bis zu 450 ppm (Parts per Million) erreichte. Diese Konzentration wird vom Weltklimarat (IPCC Special Report on the Ocean and Cryosphere in a Changing Climate von 2019) als Best-Case Szenario für das Jahr 2100 angegeben, im Juni 2019 waren es 415 ppm. Die auf dem Meer schwimmenden Schelfeise der antarktischen Eisschilde waren zu dieser Zeit vermutlich komplett zerfallen. „Anhand der Sedimentablagerungen erkennen wir zum Beispiel, dass große Gletscher in der Ostantarktis in extremen warmen Epochen wie dem Pliozän auf ganz ähnliche Weise reagierten, wie wir es heute bereits bei den Gletschern in der Westantarktis sehen“, berichtet die Erstautorin und ehemalige AWI-Geophysikerin Dr. Katharina Hochmuth, die mittlerweile an der Universität von Leicester in Großbritannien forscht. 

Die neuen Karten liefern demzufolge Daten zu wichtigen Randbedingungen, welche Klimaforschende auf der gesamten Welt benötigen, um die Entwicklung der Eismassen in ihren Eisschild- und Klimamodellen richtig zu simulieren und damit bessere Vorhersagen für die Zukunft treffen zu können. 

Erläuterungen zur Grafik:

vor 34 Millionen Jahren – Übergang vom Eozän in das frühe Oligozän; Beginn der kontinentalen Vereisung des antarktischen Kontinents

vor 27 Millionen Jahren – frühes Oligozän;  

vor 24 Millionen Jahren – Übergang vom Oligozän in das Miozän; 

vor 21 Millionen Jahren – frühes Miozän; 

vor 14 Millionen Jahren – mittleres Miozän, Klimaoptimum des Miozäns (globale Durchschnittstemperatur rund 4 Grad Celsius wärmer als heute; erhöhte Kohlendioxidkonzentration in der Atmosphäre);

vor 10,5 Millionen Jahren – spätes Miozän, große kontinentale Vereisungsphasen;

vor 5 Millionen Jahren – frühes Pliozän (globale Durchschnittstemperatur rund 2-3 Grad Celsius wärmer; erhöhte Kohlendioxidkonzentration in der Atmosphäre);

vor 2,65 Millionen Jahren – Übergang vom Pliozän in das Pleistozän;

vor 0,65 Millionen Jahren – Pleistozän

Quelle: Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

Print Friendly, PDF & Email
error: Content is protected !!

Pin It on Pinterest

Share This