Oldest permafrost in Siberia discovered | Polarjournal
Russian and German researchers are exploring the Batagai permafrost megaslump. Fossils of animals dating back thousands of years have been found in this area several times. (Photo: AWI / Thomas Opel)

While determining the age of a permafrost layer in Siberia, an international team of experts set a new record: at its deepest point, the soil is at least 650,000 years old. Yet the team’s findings, just published in the magazine Quaternary Research, also reveal how sensitive the soil is to disturbances – and how quickly it can be destroyed.

The Batagai crater is located in eastern Siberia and is also known as the ‘gateway to the underworld’ by the local population. (Photo: Alexander Kizyakov, Lomonosov Moscow State University)

An international team of researchers has now dated the oldest known permafrost in Siberia. The permafrost layer, located near the eastern Siberian village of Batagay, has been frozen in a depth of ca. 50 metres for the past 650,000 years – a record. “That means this permafrost layer has already survived several glacial and interglacial periods,” says geographer Dr Thomas Opel from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) in Potsdam. This finding is relevant because it shows that, even during warmer periods, permafrost doesn’t necessarily have to thaw entirely. For example, the permafrost in Batagay apparently survived a particularly warm phase roughly 130,000 years ago, when it was four to five degrees Celsius warmer in the Arctic summer than today.

Permafrost refers to soil and rock that is permanently frozen, in some cases to a depth of several hundred metres. It is chiefly found in North America and Siberia, but also in mountain ranges, and, like a massive deep-freeze, preserves tremendous amounts of dead biomass, primarily plant matter but also the remains of fauna from the last ice age, like mammoths and woolly rhinoceroses.

When permafrost thaws, it activates bacteria that begin breaking down the ancient biomass and, through their metabolic processes, release the climate-relevant gases carbon dioxide and methane; the more intensive the thawing, the more gas is released. With regard to the on-going climate change, experts fear that this aspect could worsen the greenhouse effect.

Batagai permafrost megaslump in Siberia. Researchers have now dated the permafrost at a depth of 50 metres to an age of 650,000 years – making it the oldest permafrost ever recorded in Eurasia. (Photo: AWI / Thomas Opel)

Under favourable conditions, more robust than previously assumed

Accordingly, the findings that the team has now published in the magazine Quaternary Research are of major importance. They show that, at consistently low ground temperatures, extremely old and deeply buried permafrost can survive naturally occurring warmer periods, whereas the permafrost elsewhere undergoes massive thawing, especially near the surface. At the same time, however, the situation near Batagay demonstrates how sensitive permafrost is to anthropogenic disturbances. The 650,000-year-old permafrost is located on a hillslope at a depth of ca. 50 metres, where the temperature remains stable at minus 10 degrees Celsius. But, from the 1940s to the 1960s, the slope was partly cleared, and used by heavy tracked vehicles as a road to reach a nearby mine. In the process, it lost its protective and insulating plant cover. As a result, the younger permafrost began thawing near the surface in summer, until the ground finally began sliding away, uncovering the older permafrost. For years, meltwater has transported the thawed material downhill, forming a large crater.

The crater is now up to 50 metres deep. In addition, the cliff continues to erode at a rate of up to 30 metres per year. (Photo: Alexander Kizyakov, Lomonosov Moscow State University)

Combining a range of analytical methods

The team, which included German, Russian and English researchers and was led by Prof Julian Murton from the University of Sussex, explored the permafrost from the upper end of the cliff to its base, using a range of methods to precisely determine the age of the permafrost at various depths. For example, luminescence dating was used to determine when the quartz and feldspar grains found in sand at various depths were covered by subsequent layers, making it the last time they were exposed to sunlight. In contrast, experts from the Helmholtz-Zentrum Dresden-Rossendorf measured the concentration of radioactive and stable chlorine in the ice samples using highly sensitive accelerator mass spectrometry. This approach makes it possible to directly measure the age of the ice, which forms long wedges in the permafrost in the course of millennia.

Research at the Batagai permafrost megaslump is not without danger and requires alpine knowledge. (Photo: AWI / Thomas Opel)

“The dating results from Batagay impressively show how stable permafrost can be, managing to survive for hundreds of thousands of years,” says Thomas Opel, “but also how sensitive it is to disturbances.” Once the damage is done, it’s irreparable, because the exposed permafrost thaws even more with every summer. Over the past 50 years, the ‘megaslump’ has grown to a width of ca. 900 metres.

Recently launched joint project

The potential that the ancient permafrost in Batagay holds for reconstructing the climatic and environmental conditions in past eras is the subject of a joint research project recently launched by the AWI in Potsdam and Northumbria University, England. The project, sponsored by the UK-based Leverhulme Trust, will investigate under which climatic conditions in the geological past the Siberian permafrost formed, remained stable, or degraded. This information is important for predicting the future development of the permafrost as climate change progresses. Both the AWI Potsdam’s past and future efforts concerning Batagay are especially based on long-standing collaborations with the Melnikov Permafrost Institute and North-Eastern Federal University in Yakutsk.

Source: AWI, Bremerhaven / Thomas Opel

Print Friendly, PDF & Email
error: Content is protected !!
Share This